翻訳と辞書
Words near each other
・ Zero hour P.E.
・ Zero Hour!
・ Zero Hubbard
・ Zero In
・ Zero In On
・ Zero insertion force
・ Zero Install
・ Zero instruction set computer
・ Zero interest-rate policy
・ Zerna Sharp
・ Zernek Dam
・ Zernez
・ Zernez (Rhaetian Railway station)
・ Zernien
・ Zernike (crater)
Zernike polynomials
・ Zernikow
・ Zernitz
・ Zernitz station
・ Zernitz-Lohm
・ Zernograd
・ Zernogradsky
・ Zernogradsky District
・ ZerNona Black
・ Zernov
・ Zernov (surname)
・ Zernsdorf
・ Zernyia
・ Zero (1928 film)
・ Zero (2010 film)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Zernike polynomials : ウィキペディア英語版
Zernike polynomials

In mathematics, the Zernike polynomials are a sequence of polynomials that are orthogonal on the unit disk. Named after optical physicist Frits Zernike, winner of the 1953 Nobel Prize in Physics, and the inventor of phase contrast microscopy, they play an important role in beam optics.〔
〕〔


==Definitions==
There are even and odd Zernike polynomials. The even ones are defined as
:Z^_n(\rho,\varphi) = R^m_n(\rho)\,\cos(m\,\varphi) \!
and the odd ones as
:Z^_n(\rho,\varphi) = R^m_n(\rho)\,\sin(m\,\varphi), \!
where ''m'' and ''n'' are nonnegative integers with ''n'' ≥ ''m'', ''φ'' is the azimuthal angle, ''ρ'' is the radial distance 0\le\rho\le 1, and ''R''''m''''n'' are the radial polynomials defined below. Zernike polynomials have the property of being limited to a range of −1 to +1, i.e. |Z^_n(\rho,\varphi)| \le 1. The radial polynomials ''R''''m''''n'' are defined as
:R^m_n(\rho) = \sum_^} \frac-k \right )! \left (\tfrac-k \right)!} \;\rho^
for ''n'' − ''m'' even, and are identically 0 for ''n'' − ''m'' odd.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Zernike polynomials」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.